翻訳と辞書
Words near each other
・ Rifaat Garrana
・ Rifaat Hussain
・ Rifaat Turk
・ Rifabutin
・ Rifaina
・ Rifalazil
・ Rifampicin
・ Riesz mean
・ Riesz potential
・ Riesz rearrangement inequality
・ Riesz representation theorem
・ Riesz sequence
・ Riesz space
・ Riesz theorem
・ Riesz transform
Riesz's lemma
・ Riesz–Fischer theorem
・ Riesz–Markov–Kakutani representation theorem
・ Riesz–Thorin theorem
・ Riet
・ Riet River
・ Riet River (Doring)
・ Riet, Germany
・ Rietavas
・ Rietavas Manor
・ Rietavas Municipality
・ Rietberg
・ Rietberg Castle
・ Rietberg Museum
・ Rietbrock, Wisconsin


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Riesz's lemma : ウィキペディア英語版
Riesz's lemma

Riesz's lemma (after Frigyes Riesz) is a lemma in functional analysis. It specifies (often easy to check) conditions that guarantee that a subspace in a normed linear space is dense. The lemma may also be called the Riesz lemma or Riesz inequality. It can be seen as a substitute for orthogonality when one is not in an inner product space.
== The result ==
Before stating the result, we fix some notation. Let ''X'' be a normed linear space with norm |·| and ''x'' be an element of ''X''. Let ''Y'' be a closed subspace in ''X''. The distance between an element ''x'' and ''Y'' is defined by
: d(x, Y) = \inf_ |x - y|.
Now we can state the Lemma:
Riesz's Lemma. Let ''X'' be a normed linear space, ''Y'' be a closed proper subspace of ''X'' and α be a real number with Then there exists an ''x'' in ''X'' with |''x''| = 1 such that |''x'' − ''y''| > α for all ''y'' in ''Y''.

''Remark 1.'' For the finite-dimensional case, equality can be achieved. In other words, there exists ''x'' of unit norm such that ''d''(''x'', ''Y'') = 1. When dimension of ''X'' is finite, the unit ball ''B'' ⊂ ''X'' is compact. Also, the distance function ''d''(· , ''Y'') is continuous. Therefore its image on the unit ball ''B'' must be a compact subset of the real line, proving the claim.
''Remark 2.'' The space ℓ of all bounded sequences shows that the lemma does not hold for α = 1.
The proof can be found in functional analysis texts such as Kreyszig. An (online proof from Prof. Paul Garrett ) is available.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Riesz's lemma」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.